perpendicular to \(PO\) are cancelled and those along \(PO\) are added. The electric field due to an
element of length \(dl\) ( \(a d \theta\) ) along \(PO\)
\(\mathrm{d} E=\frac{1}{4 \pi \mathcal{E}_{0}} \frac{\mathrm{d} q}{a^{2}} \cos \theta\)
\(=\frac{1}{4 \pi \mathcal{E}_{0}} \frac{\lambda \mathrm{d} l}{a^{2}} \cos \theta\)
\(=\frac{1}{4 \pi \mathcal{E}_{0}} \frac{\lambda(a \mathrm{d} \theta)}{a^{2}} \cos \theta\)
Net electric field at \(\mathrm{O}\)
\(E=\int_{-\pi / 2}^{\pi / 2} \mathrm{d} E=2 \int_{0}^{\pi / 2} \frac{1}{4 \pi \mathcal{E}_{0}} \frac{\lambda \cos \theta \mathrm{d} \theta}{a^{2}}\)
\(2 \cdot \frac{1}{4 \pi \mathcal{E}_{0}} \frac{\lambda}{a}[\sin \theta]_{0}^{\pi / 2}=2 \cdot \frac{1}{4 \pi \mathcal{E}_{0}} \cdot \frac{\lambda}{a} \cdot 1=\frac{\lambda}{2 \pi \mathcal{E}_{0} a}\)