\( \left(\frac{\mu_0 \mathrm{i}}{4 \mathrm{R}_2}+\frac{\mu_0 \mathrm{i}}{4 \mathrm{R}_1}\right) \otimes \)
\( \frac{4 \pi \times 10^{-7} \times 4}{4 \times 4 \pi}+\frac{4 \pi \times 10^{-7} \times 4}{4 \times 2 \pi} \)
\( =3 \times 10^{-7}=\alpha \times 10^{-7} \)
\( \alpha=3\)
કેન્દ્ર પર ચુંબકીય ક્ષેત્ર $\sqrt{\mathrm{X}} \mathrm{mT}$ હોય તો $\mathrm{X}=$.....
$\left[\mu_0=4 \pi \times 10^{-7} \mathrm{TmA}^{-1}\right]$