\(\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-1 / \gamma}\)
\(\therefore\) for \(\mathrm{A}=\frac{\mathrm{A}_{0}}{\mathrm{e}}, \mathrm{t}=\gamma\)
\(\mathrm{t}=\gamma=\frac{2 \mathrm{m}}{\mathrm{b}}=\frac{\frac{2 \mathrm{m}}{\mathrm{B}^{2} \ell^{2}}}{\frac{\mathrm{B}^{2} \ell^{2}}{\mathrm{R}}}=10^{4} \,\mathrm{s}\)
\(\therefore \) No of oscillation \(\frac{\mathrm{t}}{\mathrm{T}_{0}}=\frac{10^{4}}{2 \pi / \sqrt{10}} \approx 5000\)
(${e}^{-1}=0.37$ લો)