\(\therefore \,2\sqrt {(H - {h_1}){h_1}} = 2\sqrt {\left( {H - {h_2}} \right){h_2}} \)
Squaring both sides,
\(4\left( {H - {h_1}} \right){h_1} = 4\left( {H - {h_2}} \right){h_2}\)
\(H{h_1} - h_1^2 = H{h_2} - h_2^2\)
On solving we get,
\(H = {h_1} + {h_2}\)
Hence, the ratio of \(\frac{{{h_1}}}{{{h_2}}}\) depends on \(H\).