If there was no collision each spring will oscillate with period
\(T=2 \pi \sqrt{\frac{m}{k}}\)
Because of collisions the springs are only compressed but cannot extend beyond their natural length. Hence the perform only half oscillation.
Hence \(\quad T=2 \pi \sqrt{\frac{m}{k}} \div 2\)
or \(T=\pi \sqrt{\frac{m}{k}}\)
$x\left( t \right) = A\,\sin \,\left( {at + \delta } \right)$
$y\left( t \right) = B\,\sin \,\left( {bt} \right)$
તો નીચેનામાંથી શું સાચું પડશે?