Rate of energy storing \(=\frac{d E}{d t}=L I \frac{d I}{d t}\)
Now we Know for \(R-L\) circuit
\(I=\frac{E}{R}\left(1-e^{-t \frac{R}{L}}\right)\)
So \(\frac{d I}{d t}=\frac{E}{L} e^{-\frac{t R}{L}}\)
\(\frac{d E}{d t}=\frac{E^2}{R}\left(1-e^{-\frac{t R}{L}}\right)\left(e^{-t \frac{R}{L}}\right)\)
Time at which rate of power storing will be \(\max\)
\(t =\frac{L}{R \ln 2}\)
So \(\frac{d E}{d t}=\frac{E^2}{R}\left(1-\frac{1}{2}\right) \times \frac{1}{2}\)
\(\Rightarrow \frac{E^2}{4 R}=\frac{E^2}{100}=\frac{E^2}{2 \times 50}\)
\(a=2, b=50\)
So \(\frac{b}{a}=25\)