આપેલ પૈકી ક્યૂ વિધાન અસત્ય છે ?
  • A$\log (1 + x) < x\,\,\,{\rm{for}}\,\,x > 0$
  • B${x \over {1 + x}} < \log (1 + x)\,\,{\rm{for}}\,\,x > {\rm{0}}$
  • C${e^x} > 1 + x\,\,{\rm{for}}\,\,x > 0$
  • D${e^x} < 1 - x\,\,{\rm{for }}\,x > {\rm{0}}$
Difficult
Download our app for free and get startedPlay store
d
(d) \({\log _e}(1 + x) - x = {\log _e}(1 + x) - {\log _e}{e^x} = {\log _e}{{1 + x} \over {{e^x}}}\)

\( = \ln {{1 + x} \over {1 + x + {{{x^2}} \over {2\,!}} + {{{x^3}} \over {3\,!}} + ...}} < {\rm{ }}0,\,{\rm{as }}1 + x < 1 + x + {{{x^2}} \over {2\,!}} + .... + \)

\(\therefore {\log _e}(1 + x) < x\), for \(x > 0\).

\({x \over {1 + x}} - \log (1 + x) = 1 - {1 \over {1 + x}} - \log (1 + x)\)

= \(1 - \left[ {{1 \over {1 + x}} + \log (1 + x)} \right]\, < 0\), for \(x > 0\)

\(\therefore {x \over {1 + x}} < \log (1 + x)\), \(\therefore (b)\) is true

\({e^x} - (1 + x) = 1 + x + {{{x^2}} \over {2\,!}} + {{{x^3}} \over {3\,!}} + ..... - (1 + x)\)

= \({{{x^2}} \over {2\,!}} + {{{x^3}} \over {3\,!}} + ..... > 0\), for \(x > 0\)

\(\therefore {e^x} > 1 + x\), for \(x > 0\); \(\therefore (c)\) is true

\({e^x} - (1 - x) = 1 + x + {{{x^2}} \over {2\,!}} + ...... - 1 + x\)

= \(2x + {{{x^2}} \over {2\,!}} + {{{x^3}} \over {3\,!}} + ....... > 0\), for \(x > 0\)

\(\therefore {e^x} > 1 - x\), for \(x > 0\)

Thus, \({e^x} < (1 - x),\) for \(x > 0\) is not true.

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    ${\log _2}7$ એ . . . . થાય.
    View Solution
  • 2
    ${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
    View Solution
  • 3
    $(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ ની કિમત શોધો 
    View Solution
  • 4
    ${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
    View Solution
  • 5
    જો ${{3x + 4} \over {{x^2} - 3x + 2}} = {A \over {x - 2}} - {B \over {x - 1}}$,તો $(A,\,B) = $
    View Solution
  • 6
    $\sum {{1 \over {1 + {x^{a - b}} + {x^{a - c}}}} = } $
    View Solution
  • 7
    જો ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ હોય તો 
    View Solution
  • 8
    વાસ્તવિક સંખ્યા $k$ ની કેટલી કિમત માટે વાસ્તવિક સહગુણકો ધરાવતા સમીકરણ ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ નો માત્ર એક્જ ઉકેલ મળે.
    View Solution
  • 9
    સમીકરણ ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ ના ઉકેલની સંખ્યા મેળવો.
    View Solution
  • 10
    જો ${1 \over {x(x + 1)\,(x + 2)....(x + n)}} = {{{A_0}} \over x} + {{{A_1}} \over {x + 1}} + {{{A_2}} \over {x + 2}} + .... + {{{A_n}} \over {x + n}}$ તો ${A_r} = $
    View Solution