વાસ્તવિક સંખ્યા $k$ ની કેટલી કિમત માટે વાસ્તવિક સહગુણકો ધરાવતા સમીકરણ ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ નો માત્ર એક્જ ઉકેલ મળે.
  • A$2$
  • B$1$
  • C$4$
  • D
    એકપણ નહી.
Difficult
Download our app for free and get startedPlay store
b
(b) Let \({\log _{16}}x = y \Rightarrow {y^2} - y + {\log _{16}}k = 0\)

This quadratic equation will have exactly one solution if its discriminant vanishes.

\(\therefore {( - 1)^2} - 4.1.{\log _{16}}k = 0 \Rightarrow 1 = {\log _{16}}{k^4}\)

\( \Rightarrow \)\({k^4} = 16\) \( \Rightarrow \) \({k^2} = 4\) \( \Rightarrow \) \(k = \pm 2\).

But \({\log _{16}}k\) is not defined \(k < 0\), \(k = 2\).

\(\therefore\) Number of real values of \(k = 1\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    ${1 \over {x({x^2} + 1)}} = {A \over x} + {{Bx + C} \over {({x^2} + 1)}}$, તો $(A,\,B,\,C) = $
    View Solution
  • 2
    જો ${\log _{12}}27 = a,$ તો ${\log _6}16 = $
    View Solution
  • 3
    જો $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$ તો આપેલ પૈકી કોની કિમત $1$ છે.
    View Solution
  • 4
    જો $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2$ તો $A = . . . .$
    View Solution
  • 5
    જો $x = \sqrt 7 + \sqrt 3 $ અને $xy = 4,$ તો ${x^4} + {y^4}=$
    View Solution
  • 6
    જો $x = {\log _5}(1000)$ અને $y = {\log _7}(2058)$ તો
    View Solution
  • 7
    જો ${{2x + 3} \over {(x + 1)(x - 3)}} = {a \over {x + 1}} + {b \over {(x - 3)}}$, તો $a + b$
    View Solution
  • 8
    ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}= . .$ . .
    View Solution
  • 9
    જો $x \ne 0 $ તો ${\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$
    View Solution
  • 10
    જો ${{ax - 1} \over {(1 - x + {x^2})\,(2 + x)}} = {x \over {1 - x + {x^2}}} - {1 \over {2 + x}}$, તો $a = $
    View Solution