[ અત્રે $\hat{i}, \hat{j}$ અને $\hat{k}$ એ અનુક્રમે $x, y$ અને $z-$ અક્ષોની દિશામાં એકમ સદિશ છે.]
\(A_{1}=0.2 m ^{2}\) [parallel to \(y - z\) plane \(]\)
\(=\overrightarrow{ A }_{1}=0.2 m ^{2} \hat{ i }\)
\(A_{2}=0.3 m ^{2}\) [parallel to \(x - z\) plane \(]\)
\(\overrightarrow{ A }_{2}=0.3 m ^{2} \hat{ j }\)
Now \(\phi_{a}=\left[\frac{3 E_{0}}{5} \hat{i}+\frac{4 E_{0}}{5} \hat{j}\right] \cdot[0.2 \hat{i}]=\frac{3 \times 0.2}{5} E _{0}\)
\( \phi_{b}=\left[\frac{3 E_{0}}{5} \hat{i}+\frac{4 E_{0}}{5} \hat{j}\right] \cdot[0.3 \hat{j}]=\frac{4 \times 0.3}{5} E _{0}\)
\(\operatorname{Now} \frac{\phi_{ a }}{\phi_{ b }}=\frac{0.6}{1.2}=\frac{1}{2}=\frac{ a }{ b }\)
\(\Rightarrow a: b=1: 2\)
\(\Rightarrow a=1\)