$2AB_{2(g)} \rightleftharpoons 2AB_{(g)} + B_{2(g)}$
વિયોજન અંશ $x$ એ $1$ ની સાપેક્ષમાં નાનો છે, તો વિયોજન અંશ $x$ ની સંતુલન અયળાંક $K_p$ અને કુલ દબાણ $P$ સાથેના સંબંધની રજૂઆત ..........
\(\text { Initial moles } \;\; 1 \quad \;\;\;\;\quad 0 \quad \quad \quad \quad 0\)
At equil. \(\quad 2(1-x)\quad \quad 2 x\quad \quad \quad x\)
where, \(x=\) degree of dissociation
Total moles at equilibrium
\(=2-2 x+2 x+x=(2+x)\)
\(\text { So, } p_{A B 2}= \frac{2(1-x) p}{(2+x)}, p_{A B}=\frac{2 x p}{(2+x)}\)
\(p_{B 2}= \frac{x p}{(2+x)}\)
\(K_{p}=\frac{p_{A} s}{\left(p_{A}\right)^{2}\left(P_{B 2}\right)}\)
\(=\frac{\left(\frac{2 r p}{2+p}\right)^{2}\left[\left(\frac{x}{2+x}\right) p\right]}{\left[\left(\frac{2 a-x}{(2+x)}\right) p\right]}\)
\(=\frac{x^{3} p}{(2+x)(1-x)^{2}}\)
\(=\frac{x^{3} p}{2}[\cdots x < < < 1 \text { and } 2]\)
\(x =\left(\frac{2 K p}{p}\right)^{1 / 3}\)
So, \((1-x) \approx ; 1(2+x) \approx 2\)
($K =$ સંતુલન અચળાંક)
$(i)\,CO(g)+ H_2O(g) \rightleftharpoons CO_2(g)+H_2(g)\,;\,K_1$
$(ii)\,CH_4(g)+H_2O(g) \rightleftharpoons CO(g)+3H_2(g)\,;\,K_2$
$(iii)\,CH_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g)+ 4H_2(g)\,;\,K_3$