\(\begin{array}{l}
W = \frac{1}{2}m{v^2} - \frac{1}{2}m{\left( 0 \right)^2}\\
kt = \frac{1}{2}m{v^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {{\rm{Using}}\,equation\left( i \right)} \right]\\
v = \sqrt {\frac{{2kt}}{m}} \\
Acceleration\,of\,the\,particle,\,a = \frac{{dv}}{{dt}}
\end{array}\)
\(\begin{array}{l}
\,\,\,\,\,\,\,a = \frac{1}{2}\sqrt {\frac{{2k}}{m}} \frac{1}{{\sqrt t }} = \sqrt {\frac{k}{{2mt}}} \\
Force\,on\,the\,particle,\\
\,F = ma = \sqrt {\frac{{mk}}{{2t}}} = \sqrt {\frac{{mk}}{2}} \,{t^{ - 1/2}}
\end{array}\)
$\left(1 \;\mathrm{HP}=746 \;\mathrm{W}, \mathrm{g}=10\; \mathrm{ms}^{-2}\right)$