$(i)\,\, X_2 \rightarrow X + X$ $($ઝડપી$)$
$(ii)\,\,X + Y_2 \rightleftharpoons XY + Y$ $($ધીમી$)$
$(iii)\,\,X+ Y \rightarrow XY$ $($ઝડપી$)$
તો કુલ પ્રક્રિયાક્રમ જણાવો.
$\mathrm{r}=\mathrm{K}[\mathrm{X}]\left[\mathrm{Y}_{2}\right]$
From fast step-
${\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{X}]^{2}}{\left[\mathrm{X}_{2}\right]}} $
${[\mathrm{X}]^{2}=\mathrm{K}_{\mathrm{eq}}\left[\mathrm{X}_{2}\right]}$
${[\mathrm{X}]=\sqrt{\mathrm{K}_{\mathrm{eq}}}\left[\mathrm{X}_{2}\right]^{1 / 2} \ldots .(2)}$
From equation $(1)$ and $( 2)$
$\mathrm{r}=\mathrm{K} \cdot \sqrt{\mathrm{K}_{\mathrm{eq}}}\left[\mathrm{X}_{2}\right]^{1 / 2}\left[\mathrm{Y}_{2}\right]$
$\mathrm{r}=\mathrm{K}\left[\mathrm{X}_{2}\right]^{1 / 2}\left[\mathrm{Y}_{2}\right]$
Overall order of reaction $=1+0.5=1.5$
$(R= 8.314\,JK^{-1} \,mol^{-1}$ and $\log 2=0.301)$
|
ક્રમ. |
$[A]_0$ |
$[B]_0$ |
વેગ $($મોલ $s^{-1}$) |
|
$(1)$ |
$0.50$ |
$0.50$ |
$1.6 \times {10^{ - 4}}$ |
|
$(2)$ |
$0.50$ |
$1.00$ |
$3.2 \times {10^{ - 4}}$ |
|
$(3)$ |
$1.00$ |
$1.00$ |
$3.2 \times {10^4}$ |
ઉપરોક્ત માહિતીને અનુરૂપ વેગ નિયમ શું છે?