So, the law can be given as
$R=k[A]^{x}[B]^{y}$ ...... $(i)$
When the concentration of only $\mathrm{B}$ is doubled, the rate is doubled, so
$R_{1}=k[A]^{x}[2 B]^{y}=2 R$ ..... $(ii)$
If concentrations of both the reactants $A$ and $B$ are doubled, the rate increases by a factor of $8,$ so $R^{\prime \prime}=k[2 A]^{x}[2 B]^{y}=8 R$ .... $(i i i)$
$\Rightarrow k 2^{x} 2^{y}[A]^{x}[B]^{y}=8\, R$ ..... $(iv)$
From Eqs. $(i)$ and $(ii)$,
we get $\Rightarrow \quad \frac{2 R}{R}=\frac{|A|^{x}|2 B|^{y}}{|A|^{x}|B|^{y}}$
$2=2^{y}$
$\therefore y=1$
From Eqs. (i) and (iv), we get $\Rightarrow \frac{8 R}{R}=\frac{2^{x} 2^{y}[A]^{x}|B|^{y}}{|A|^{x}[B]^{y}}$
or $8=2^{x} 2^{y}$
Substitution of the value of $y$ gives,
$8=2^{x} 2^{1}$
$4=2^{x}$
$(2)^{2}=(2)^{x}$
$x=2$
Substitution of the value of $x$ and $y$ in Eq. $(i)$ gives,
$R=k[A]^{2}[B]$
$\ln k=33.24-\frac{2.0 \times 10^{4} \,K }{ T }$
તે પ્રક્રિયાની સક્રિયકરણ ઊર્જા $.....\,kJ\, mol ^{-1}$ થશે. (નજીકનો પૂર્ણાંકમાં)
(આપેલ છે : $R =8.3 \,J \,K ^{-1} \,mol ^{-1}$ )