So, the law can be given as
$R=k[A]^{x}[B]^{y}$ ...... $(i)$
When the concentration of only $\mathrm{B}$ is doubled, the rate is doubled, so
$R_{1}=k[A]^{x}[2 B]^{y}=2 R$ ..... $(ii)$
If concentrations of both the reactants $A$ and $B$ are doubled, the rate increases by a factor of $8,$ so $R^{\prime \prime}=k[2 A]^{x}[2 B]^{y}=8 R$ .... $(i i i)$
$\Rightarrow k 2^{x} 2^{y}[A]^{x}[B]^{y}=8\, R$ ..... $(iv)$
From Eqs. $(i)$ and $(ii)$,
we get $\Rightarrow \quad \frac{2 R}{R}=\frac{|A|^{x}|2 B|^{y}}{|A|^{x}|B|^{y}}$
$2=2^{y}$
$\therefore y=1$
From Eqs. (i) and (iv), we get $\Rightarrow \frac{8 R}{R}=\frac{2^{x} 2^{y}[A]^{x}|B|^{y}}{|A|^{x}[B]^{y}}$
or $8=2^{x} 2^{y}$
Substitution of the value of $y$ gives,
$8=2^{x} 2^{1}$
$4=2^{x}$
$(2)^{2}=(2)^{x}$
$x=2$
Substitution of the value of $x$ and $y$ in Eq. $(i)$ gives,
$R=k[A]^{2}[B]$
(આપેલું છે$: \ln 10=2.3, R =8.3 \,J\, K ^{-1} \,mol ^{-1}, \log 2=0.30$ )
$\mathop {2{N_2}{O_5}}\limits_{{\rm{(in}}\,\,{\rm{CC}}{{\rm{l}}_4}{\rm{)}}} \to \mathop {4N{O_2}}\limits_{{\rm{(in}}\,\,{\rm{CC}}{{\rm{l}}_4}{\rm{)}}} + {O_2}$
$[$આપેલ છે :${R}=8.31\, {~J} \,{~K}^{-1} \,{~mol}^{-1} ; \log 6.36 \times 10^{-3}=-2.19$ $\left.10^{-4.79}=1.62 \times 10^{-5}\right]$
પ્રક્રિયા માટે બ્રોમીન $(Br_2)$ નો ઉત્પન્ન થવાનો દર બ્રોમાઈડ આયનના દૂર થવાના દર સાથે ......... સંબંધ ધરાવે છે.