For second resonant length
\(v^{\prime}=\frac{3 v^{\prime}}{4 \ell_{2}}=\frac{3 v^{\prime}}{4 x} \text { (insummer) } \quad \therefore \frac{v}{4 \times 18}=\frac{3 v^{\prime}}{4 \times x}\)
\(\therefore \quad x=3 \times 18 \times \frac{v^{\prime}}{v} \quad \therefore x=54 \times \frac{v^{\prime}}{v} \mathrm{cm}\)
\(\mathrm{v}^{\prime}>\mathrm{v}\) because velocity of light is greater in summer as compared to winter \((\mathrm{v} \propto \sqrt{\mathrm{T}})\)
\(\therefore x>54 \mathrm{cm}\)
${y}=1.0\, {mm} \cos \left(1.57 \,{cm}^{-1}\right) {x} \sin \left(78.5\, {s}^{-1}\right) {t}$
${x}>0$ ના ક્ષેત્રમાં ઉગમબિંદુથી નજીકનું નિસ્પંદ બિંદુ ${x}=\ldots \ldots \ldots\, {cm}$ અંતરે હશે.