\(i _{1}:\) Current in primary coil
\(M\) : Mutual inductance
\(e _{2}=- M \frac{ di _{1}}{ dt }\)
\(M =-\frac{ e _{2}}{\frac{ di }{ dt }}\)
\({[ M ]=\frac{\left[ e _{2}\right]}{\left[\frac{ di _{1}}{ dt }\right]}=\frac{\left[\frac{ W }{ q }\right]}{\left[\frac{ di _{1} }{ dt }\right]}=\frac{\left[ ML ^{2} T ^{-2}\right]}{\left[ \frac {AT}{AT^{-1}}\right]}}\)
\(=\left[ ML ^{2} T ^{-2} A ^{-2}\right]\)