જો $R = -CH_2C_6H_5$ તો $(Phe)$
એ ફિનાઇલ એલેનીન અને જો $R = CH_3$ તો તે એલેનાઇન $(Ala)$.
આપેલા સંશ્લેષણ $Phe- Ala$ માટે નીચે આપેલા પ્રક્રિયકનો ક્રમ શોધો
$(1)$ $\begin{matrix}
C{{H}_{3}} \\
|\,\,\,\,\,\, \\
ZNH\,C\,HC{{O}_{2}}H \\
\end{matrix}$ $(2)$ $\begin{matrix}
C{{H}_{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
{{H}_{2}}N\,C\,HC{{O}_{2}}C{{H}_{2}}{{C}_{6}}{{H}_{5}} \\
\end{matrix}$
$(3)$ $\begin{matrix}
\,\,\,\,\,\,\,\,\,\,\,\,C{{H}_{3}}{{C}_{6}}{{H}_{5}} \\
|\,\,\,\,\, \\
ZNH\,C\,HC{{O}_{2}}H \\
\end{matrix}$ $(4)$ $\begin{matrix}
C{{H}_{2}}{{C}_{6}}{{H}_{5}}\,\,\,\,\, \\
|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
{{H}_{2}}N\,CHC{{O}_{2}}C{{H}_{2}}{{C}_{6}}{{H}_{5}} \\
\end{matrix}$
$\begin{array}{|c|c|c|c|}\hline {} &\text { Molisch's Test} & {\text { Barfoed Test}} & {\text { Biuret Test}} \\ \hline \text { A} & { Positive } & {\text { Negative }} & {\text { Negative }} \\ \hline \text { B } & {\text { Positive }} & {\text { Positive }} & {\text { Negative }} \\ \hline \text { C } & {\text { Negative }} & {\text { Negative }} & {\text { Positive }} \\ \hline\end{array}$
$A, B$ અને $C$ અનુક્રમે