At \(t=0,\left(N_{0}\right)_{A}=\left(N_{0}\right)_{B}\)
\(\frac{N_{A}}{N_{B}}=\left(\frac{1}{e}\right)^{2}\)
According to radioactive decay, \(\frac{N}{N_{0}}=e^{-\lambda t}\)
\(\therefore \,\frac{N_{A}}{\left(N_{0}\right)_{A}} =e^{-\lambda_{A} t} \) ..... \((i)\)
\(\frac{N_{B}}{\left(N_{0}\right)_{B}} =e^{-\lambda_{B} t}\) ..... \((ii)\)
Divide \((i)\) by \((ii)\), we get
\(\frac{N_{A}}{N_{B}}=e^{-\left(\lambda_{A}-\lambda_{B}\right) t}\) or, \(\frac{N_{A}}{N_{B}}=e^{-(5 \lambda-\lambda) t}\)
or, \(\left(\frac{1}{e}\right)^{2}=e^{-4 \lambda t}\) or, \(\left(\frac{1}{e}\right)^{2}=\left(\frac{1}{e}\right)^{4 \lambda t}\)
or, \(4 \lambda t=2\) \( \Rightarrow \quad t=\frac{2}{4 \lambda}=\frac{1}{2 \lambda}\)