Beat frequency \(x=5\) \(Hz\) which is decreasing \((5 \rightarrow 3)\) after increasing the tension of the string \(B\).
Also tension of string \(\mathrm{B}\) increasing so
\(\mathrm{n}_{\mathrm{B}} \uparrow(\because \mathrm{n} \propto \sqrt{\mathrm{T}})\)
Hence \(\quad \mathrm{n}_{\mathrm{A}}-\mathrm{n}_{\mathrm{B}} \uparrow=x \downarrow \longrightarrow\) correct
\(\mathrm{n}_{\mathrm{B}} \uparrow-\mathrm{n}_{\mathrm{A}}=\mathrm{x} \downarrow \longrightarrow \text { incorrect }\)
\(\therefore \mathrm{n}_{\mathrm{B}}=\mathrm{n}_{\mathrm{A}}-\mathrm{x}=425-5=420 \mathrm{Hz}\)