\(y_1=4 \sin 500 \pi t\)
\(y_2=2 \sin 506 \pi t\)
Frequency of \(y_1\left(f_1\right)=\frac{\omega}{2 \pi}=\frac{500 \pi}{2 \pi}=250 \,Hz\)
Frequency of \(y_2\left(f_2\right)=\frac{\omega}{2 \pi}=\frac{506 \pi}{2 \pi}=253 \,Hz\)
Intensity relation \(\frac{A_{\max }}{A_{\min }}=\frac{\left(A_1+A_2\right)^2}{\left(A_1-A_2\right)^2}\)
\(=\frac{36}{4}=9\)

${y_1} = 0.05\,\cos \,\left( {0.50\,\pi x - 100\,\pi t} \right)$
${y_2} = 0.05\,\cos \,\left( {0.46\,\pi x - 92\,\pi t} \right)$
તો તેનો વેગ $m/s$માં કેટલો મળે?