Apparent frequency of sound heard by the observer from source is
\(n_1=\left(\frac{v-v_0}{v-v_s}\right) n\)
\(=\left(\frac{v-u}{v+v_s}\right) n\)
Apparent frequent of sound heard by the observe from source
\(n _2=\left(\frac{ v + v _0}{ v - v _0}\right) n\)
\(=\left(\frac{ v + u }{ v - v _{ s }}\right) n\)
\(\text { No. of beats }=8\)
\(n _2- n _{ l }=8\)
\(\left(\frac{ v + u }{ v - v _{ s }}\right) n -\left(\frac{ v - u }{ v + v _{ s }}\right) n =8 \quad v =300, v _{ s }=0, n =660\)
\(\Rightarrow\left(\frac{330+ u }{300-0}\right)(600)-\left(\frac{300- u }{330+0}\right) 660=8\)
\(\therefore \frac{2 \times 6604}{330}=8\)
\(4 u =8\)
\(u =2 .\)
$y = 0.03\,sin\,(450\,t -9x)$ છે જ્યાં અંતર અને સમય $SI$ એકમોમાં માપવામાં આવે છે. આ તારમાં તણાવ _____ $N$ હશે