\(y=2 A \sin k x \cdot \cos \omega t\)
In a standing waves the function of amplitude \(\left(A_y\right)\) is given by \(A_y=2 A \sin k x\)
At mid-point of node and antinode \(x=\frac{\lambda}{8}\)
\(A_y=2 A \sin \frac{2 \pi}{\lambda} \times \frac{\lambda}{8}\left[k=\frac{2 \pi}{\lambda}\right]\)
\(\text { or } A_y=\frac{2 A}{\sqrt{2}}\)
\(\therefore A_y=\sqrt{2} A\)
Frequency is same at all points \(=\frac{\omega}{2 \pi}\)
${y}=1.0\, {mm} \cos \left(1.57 \,{cm}^{-1}\right) {x} \sin \left(78.5\, {s}^{-1}\right) {t}$
${x}>0$ ના ક્ષેત્રમાં ઉગમબિંદુથી નજીકનું નિસ્પંદ બિંદુ ${x}=\ldots \ldots \ldots\, {cm}$ અંતરે હશે.
(હવામાં ધ્વનિની ઝડપ $340\, {ms}^{-1}$)