Given that,
kinetic energy of satellite \(=x\)
To find, time of revolution \(T \alpha\)
\(\because \frac{G m m}{2 r}=K \cdot E .\)
Let \(\frac{G m_m}{2}=c\)
\(\therefore \frac{c}{r}=k \cdot E \cdot x\).
Frum kepler's \(3^{r d}\) law:
\(T^2=r^3\)
\(T^2=\left(\frac{c}{x}\right)^3\)
\(T=\frac{c^{3 / 2}}{x^{3 / 2}}=c^{3 / 2} x^{-3 / 2}\)
\(\therefore T \propto x^{-3 / 2}\left(\because c^{3 / 2}=\right.\) constant \()\)
$(g=10 \mathrm{~m} / \mathrm{s}^2$ અને $ R=$ પૃથ્વીની ત્રિજ્યા છે.)