${(C{H_3})_2}CHN\,\, = \,\,NCH{(C{H_3})_2}(g)\,\xrightarrow{{250\,\, - \,\,{{290}\,^o }C}}\,{N_2}(g)\,\, + \,\,{C_6}{H_{14}}(g)$
તે પ્રથમ ક્રમની પ્રક્રિયા છે. જો પ્રારંભિક દબાણ $P_o $ અને $t $ સમયે મિશ્રણનું દબાણ $(P_t) $ છે. તો દર અચળાંક $K $ શોધો.
${p_0 - x+x+x=P_t}$
${x=P_t-P_0}$
$K\,\, = \,\,\frac{{2.303}}{t}\log \frac{{{P_0}}}{{{P_0}\, - \,\,x}}\,\, = \,\,\frac{{2.303}}{t}\log \frac{{{P_0}}}{{2{P_0}\, - \,\,{P_t}}}$
$\mathrm{A}+\mathrm{B} \underset{\text { Step } 3}{\text { Step } 1} \mathrm{C} \xrightarrow{\text { Step } 2} \mathrm{P}$
પ્રથમના વર્તુળ પ્રક્રિયાની માહિતી નીચે સૂચવેલી છે.
| સ્ટેપ |
Rate constant $\left(\sec ^{-1}\right)$ |
Activation energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ |
| $1$ | ${k}_1$ | $300$ |
| $2$ | ${k}_2$ | $200$ |
| $3$ | ${k}_3$ | $\mathrm{Ea}_3$ |
ઉપરોક્ત રીતેની પ્રક્રિયાનું વધારણીક વર્તુળ $(k)$ આપવામાં આવે છે. $\mathrm{k}=\frac{\mathrm{k}_1 \mathrm{k}_2}{\mathrm{k}_3}$ અને ઉપરોક્ત વધારણીક તાપ $(E_2)= 400$ કેલ્વિન છે, તો $\mathrm{Ea}_3$ નું મૂલ્ય છે $\mathrm{kJ} \mathrm{mol}^{-1}$ (નજીકની પૂર્ણાંક).
$\left[\right.$ આપેલ $\left.\mathrm{R}=8.314 \,\mathrm{JK}^{-1} \,\mathrm{~mol}^{-1}\right]$