\(x=x_{0} \cos (\omega t-\pi / 4)\)
\(\therefore\) Velocity, \(v=\frac{d x}{d t}=-x_{0} \omega \sin \left(\omega t-\frac{\pi}{4}\right)\)
Acceleration,
\(a=\frac{d v}{d t}=-x_{0} \omega^{2} \cos \left(\omega t-\frac{\pi}{4}\right)\)
\(=x_{0} \omega^{2} \cos \left[\pi+\left(\omega t-\frac{\pi}{4}\right)\right]\)
\(=x_{0} \omega^{2} \cos \left(\omega t+\frac{3 \pi}{4}\right)\) \(...(1)\)
Acceleration, \(a=A \cos (\omega t+\delta)\) \(...(2)\)
Comparing the two equations, we get
\(A=x_{0} \omega^{2}\) and \(\delta=\frac{3 \pi}{4}\)
(પાણીની ઘનતા $=10^3\, kg/m^3$ આપેલ છે.)