જો \( i > \theta_c\) અથવા \(sin\,\, i > sin\,\, \theta_c\)
\(\sin \,\,i\,\,\, > \,\,\,\frac{1}{\mu }\,\,\,\left[ {as\,\,\,\sin {\theta _c} = \,\,\frac{1}{\mu }} \right]\,\,\,\,......\,\,\,(i)\)
O પાસે સ્નેલના નિયમ પરથી \(1 × sin \theta = \mu \,\, sin r \)
\(\Delta \,\, OPR\) માં ,\( r + 90 + i = 180\) \( r + i = 90°\)
તેથી \(\,sin\,\theta \,\, = \,\,\mu \,\,sin\,\,(90 - i)\,\, = \,\,\mu \,\,cos \,\,i\,\,\,\, \Rightarrow \,\, cos \,i\,\,\, = \, \frac{{sin\theta }}{\mu }\)
તેથી \(sin\,i\,\, = \,\,\,\sqrt {1 - co{s^2}i} \,\,\, = \,\,\,\sqrt {1 - {{\left[ {\frac{{\sin \theta }}{\mu }} \right]}^2}} \,\,\,......\,\,\,(ii)\)
તેથી \(sin\,\, i\) નું મૂલ્ય સમીકરણ \((ii)\) માંથી \( (i)\) માં મૂકતાં,
\(\sqrt {1 - \frac{{{{\sin }^2}\theta }}{{{\mu ^2}}}} \,\,\, > \,\,\frac{1}{\mu }\,\,\,i.e.,\,\,\,{\mu ^2} > \,\,\,1\,\, + \,\,{\sin ^2}\theta \,\,\,\therefore \,\,\,\,{\mu ^2} > 2\,\,\,\,\,\,\)
\(\because \,\,\,{({\sin ^2}\theta )_{\max }} = \,\,\,1\,\,\)
\(\, \Rightarrow \,\,\mu \,\, > \,\,\,\sqrt 2 \,\,\,\,\,\therefore \,\,{\mu _{\min }} = \,\,\sqrt 2 \)