Since particle is moving in circular path
\(\begin{gathered}
F = \frac{{m{v^2}}}{r} = \frac{K}{{{r^3}}} \Rightarrow m{v^2} = \frac{K}{{{r^2}}} \hfill \\
\therefore \,K.E. = \frac{1}{2}m{v^2} = \frac{K}{{2{r^2}}} \hfill \\
\end{gathered} \)
Total enerygy \(= P.E. + K.E.\)
\( = - \frac{K}{{2{r^2}}} + \frac{K}{{2{r^2}}} = zero\,\,\left( {\because \,P.E. = \frac{K}{{2{r^2}}}given} \right)\)