At \(t=0, x=A\)
\(x= Acos\omega t\) \(...(i)\)
\( When\,\,\, t=\tau, x=A-a\)
When \(t=2 \tau, x=A-3 a\)
From equation \(( i )\)
\(A-a=A \cos \omega \tau\) \(...(ii)\)
\(A-3 a=A \cos 2 \omega \tau\) \(...(iii)\)
As \(\cos 2 \omega \tau=2 \cos ^{2} \omega \tau-1 \ldots(\mathrm{iv})\)
From equation \((ii),\) \((iii)\) and \((iv)\)
\(\frac{A-3 a}{A}=2\left(\frac{A-a}{A}\right)^{2}-1\)
\(\Rightarrow \quad \frac{A-3 a}{A}=\frac{2 A^{2}+2 a^{2}-4 A a-A^{2}}{A^{2}}\)
\(\Rightarrow A^{2}-3 a A=A^{2}+2 a^{2}-4 A a\)
\(\Rightarrow \quad 2 a^{2}=a A \Rightarrow \quad A=2 a\)
\(\Rightarrow \quad \frac{a}{A}=\frac{1}{2}\)
Now, \(A-a=A \cos \omega \tau\)
\(\Rightarrow \quad \cos \omega \tau=\frac{A-a}{A} \Rightarrow \quad \cos \omega \tau=\frac{1}{2}\)
or, \(\quad \frac{2 \pi}{T} \tau=\frac{\pi}{3} \Rightarrow \quad \mathrm{T}=6 \tau\)