\({S_1} = \frac{1}{2}a{(P - 1)^2}\) and \({S_2} = \frac{1}{2}a\;{P^2}\) \([As\;u = 0\)]
From \({S_n} = u + \frac{a}{2}(2n - 1)\)
\({S_{{{({P^2} - P + 1)}^{th}}}} = \frac{a}{2}\left[ {2({P^2} - P + 1) - 1} \right]\)
\( = \frac{a}{2}\left[ {2{P^2} - 2P + 1} \right]\)
It is clear that \({S_{{{({P^2} - P + 1)}^{th}}}} = {S_1} + {S_2}\)
($g = 9.8\,m/{s^2}$)
($a =$ પ્રવેગ , $v =$ વેગ , $x =$ સ્થાનાંતર , $t =$ સમય)