\(\mathrm{x}=\mathrm{A} \sin (\omega \mathrm{t})=\mathrm{A} \sin (2 \pi \mathrm{nt})\)
Now,
Potential energy
\(U=\frac{1}{2} k x^{2}=\frac{1}{2} K A^{2} \,\sin ^{2}(2 \pi n t)\)
\(=\frac{1}{2} k A^{2}\left[\frac{1-\cos (2 \pi(2 n) t)}{2}\right]\)
So frequency of potential energy \(=2 \mathrm{n}\)
$x\left( t \right) = A\,\sin \,\left( {at + \delta } \right)$
$y\left( t \right) = B\,\sin \,\left( {bt} \right)$
તો નીચેનામાંથી શું સાચું પડશે?