\(P _{1}+\frac{1}{2} \rho v _{1}^{2}+\rho gy _{1}= P _{2}+\frac{1}{2} \rho v _{2}^{2}+\rho gy _{2}\)
\(P +\frac{1}{2} \rho v ^{2}=\frac{ P }{2}+\frac{1}{2} \rho V ^{2}\)
\(\frac{2 P }{2 \rho}+\frac{1}{2} \frac{\rho v ^{2}}{\rho} \times 2= V ^{2}\)
\(\sqrt{\frac{P}{\rho}+v^{2}}=V\)