Initial kinetic energy of the particle is zero.
Let the speed of the particle at point \(C\) be \(v\).
From work-energy theorem, \(W _{ g }+ W _{ f }=\Delta K \cdot E = K \cdot E _{ f }\)
where \(W _{ g }\) is work done by gravity and \(W _{ f }\) is work done by pseudo force.
From figure, we get \(AB = R - R \cos \theta= R (1-\cos \theta)\)
Also \(AC = R \sin \theta\)
\(\therefore mg ( AB )+ f ( AC )=\frac{1}{2} mv ^2\)
Or \(m g R(1-\cos \theta)+(m a)(R \sin \theta)=\frac{1}{2}{m v^2}^2\)
Or \(m g R(1+\sin \theta-\cos \theta)=\frac{1}{2}{m v^2}^2 \quad(\because a=g)\)
\(\Rightarrow v =\sqrt{2 gR (1+\sin \theta-\cos \theta)}\)