Taking, natural, log aritham, on, both, sides, we, get
$In\,g = In\,h - 2\,In\,t$
Differentiating, $\frac{{\Delta h}}{g} = \frac{{\Delta h}}{h}\, - 2\,\frac{{\Delta t}}{t}$
For, max imum, permissible, error,
or,${\left( {\frac{{\Delta g}}{g} \times 100} \right)_{\max }} = \left( {\frac{{\Delta h}}{h} \times 100} \right) + 2 \times \left( {\frac{{\Delta t}}{t} \times 100} \right)$
According, to, problem
$\frac{{\Delta h}}{h} \times 100{ = _{{e_1}}}\,and\,\frac{{\Delta t}}{t} \times 100{ = _{{e_2}}}$
Therefore, $( {\frac{{\Delta g}}{g} \times 100} )_{\max } = {e_1} + 2{e_2}$