Solve for \((q,m)\) mathematically
\(F _{ x }=0, a _{ x }=0,( v )_{ x }=\) constant
time taken to reach at \(P ^{\prime}=\frac{ d }{ V _{0}}= t _{0}( let )\)\(\ldots(1)\)
(Along \(-y), y_{0}=0+\frac{1}{2} \cdot \frac{q E}{m} \cdot t_{0}^{2}....(2)\)
\(v_{x}=v_{0}\)
\(v=u+a t\) (along -ve \('y'\))
speed \(v _{ y 0}=\frac{ q E }{ m } \cdot t _{0}\)
\(\tan \theta=\frac{ v _{ y }}{ v _{ x }}=\frac{ qEt _{0}}{ m \cdot v _{ o }},\left( t _{ o }=\frac{ d }{ v _{ o }}\right)\)
\(\tan \theta=\frac{q Ed }{ m \cdot v _{0}^{2}}\)
\(\operatorname{slope}=\frac{-q \operatorname{Ed}}{m v_{0}^{2}}\)
Now we have to find eq \(^{n}\) of straight line whose slope is \(\frac{-q Ed }{ mv _{0}^{2}}\) and it pass through
point \(\rightarrow\left( d ,- y _{0}\right)\)
Because after \(x > d\)
No electric field \(\Rightarrow F _{\text {net }}=0, \overrightarrow{ v }=\) const.
\(y=m x+c,\left\{\begin{array}{l}m=\frac{q E d}{m v_{0}^{2}} \\ \left(d,-y_{0}\right)\end{array}\right\}\)
\(-y_{0}=\frac{-q E d}{m v_{0}^{2}} \cdot d+c \Rightarrow c=-y_{0}+\frac{q E d^{2}}{m v_{0}^{2}}\)
Put the value
\(y=\frac{-q E d}{m v_{0}^{2}} x-y_{0}+\frac{q E d^{2}}{m v_{0}^{2}}\)
\(y _{0}=\frac{1}{2} \cdot \frac{ qE }{ m }\left(\frac{ d }{ v _{0}}\right)^{2}=\frac{1}{2} \frac{ q Ed ^{2}}{ mv _{0}^{2}}\)
\(y =\frac{- qEdx }{ mv _{0}^{2}}-\frac{1}{2} \frac{ qEd ^{2}}{ mv _{0}^{2}}+\frac{ qEd ^{2}}{ mv _{0}^{2}}\)
\(y=\frac{-q E d}{m v_{0}^{2}} x+\frac{1}{2} \frac{q E d^{2}}{m v_{0}^{2}}\)
\(y=\frac{q E d}{m v_{0}^{2}}\left(\frac{d}{2}-x\right)\)