$CH_3COCH_{3(aq)} + Br_{2(aq)} \rightarrow $$CH_3COCH_2Br_{(aq)} + H^+_{(aq)}+ Br^-_{(aq)}$
નીચેની પ્રક્રિયા સાંદ્રતા પરથી આ ગતિકીય માહિતી મળે છે.
શરૂઆતની સાંદ્રતા, $M$
| $[CH_3COCH_3]$ | $[Br_2]$ | $[H^+]$ |
| $0.30$ | $0.05$ | $0.05$ |
| $0.30$ | $0.10$ | $0.05$ |
| $0.30$ | $0.10$ | $0.10$ |
| $0.40$ | $0.05$ | $0.20$ |
$Br_2$ ના દૂર થવાનો શરૂઆતનો દર $Ms^{-1}$ માં નીચે મુજબ છે.
$5.7 \times 10^{-5} ,$ $5.7 \times 10^{-5} ,$ $1.2 \times 10^{-5} ,$ $3.1 \times 10^{-5}$
આ માહિતીને આધારે વેગ સમીકરણ ...... થશે.
Thus,
Rate \(\propto\left[\mathrm{CH}_{3} \mathrm{COOH}_{3}\right]^{\mathrm{X}}\left[\mathrm{Br}_{2}\right]^{\mathrm{Y}}\left[\mathrm{H}^{+}\right]^{z}\)
\(5.7 \times 10^{-5}=[0.30]^{x}[0.05]^{y}[0.05]^{z}\) ..... \((i)\)
\(5.7 \times 10^{-5}=[0.30]^{\times}(0.10)^{y}(0.05)^{z}\) ..... \((ii)\)
\(1.2 \times 10^{4}=[0.30)^{x}(0.10)^{y}(0.10)^{z}\) ..... \((iii)\)
\(3.1 \times 10^{-4}=[0.40]^{x}(0.05)^{y}(0.20)^{z} \) ..... \((iv)\)
From eqs \((i)\) and \((ii)\)
\(\mathrm{v}=0\)
From eqs \((ii)\) and \((iii)\)
\(z=1\)
From eqs \((i)\) and \((iv)\)
\(x=1\)
Thus, rate law \(\propto\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]\)
\(=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]\)
$log$નો ગુણધર્મ $\ln \left(\frac{{x}}{{y}}\right)=\ln {x}-\ln {y}$
${A}+{B} \rightarrow {M}+{N}$ $......$ ${kJ} {mol}^{-1}$ બરાબર છે. (નજીકના પૂર્ણાંકમાં)
| પ્રયોગ |
$[A]$ ($mol\, L^{-1})$ |
$[B]$ ($mol\, L^{-1})$ |
પ્રક્રિયાની શરૂઆતનો દર $(mol\, L^{-1}$ $min^{-1})$ |
| $I$ | $0.10$ | $0.20$ | $6.93 \times {10^{ - 3}}$ |
| $II$ | $0.10$ | $0.25$ | $6.93 \times {10^{ - 3}}$ |
| $III$ | $0.20$ | $0.30$ | $1.386 \times {10^{ - 2}}$ |
$A$ અડધો વપરાય તે માટેનો સમય મિનિટમાં કેટલો થાય