\(\frac{1}{\lambda}=R\left[\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right]\)
In first case, \(n_{f}=3, n_{i}=4\)
\(\therefore \quad \frac{1}{\lambda_{1}}=R\left[\frac{1}{3^{2}}-\frac{1}{4^{2}}\right]=R\left[\frac{1}{9}-\frac{1}{16}\right]=\frac{7}{144} R\) .... \((i)\)
In second case, \(n_{f}=2, n_{i}=3\)
\(\therefore \quad \frac{1}{\lambda_{2}}=R\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=R\left[\frac{1}{4}-\frac{1}{9}\right]=\frac{5}{36} R\) .... \((ii)\)
Divide \((ii)\) by \((i)\), we get
\(\frac{\lambda_{1}}{\lambda_{2}}=\frac{5}{36} \times \frac{144}{7}=\frac{20}{7}\)
$\text { ( } h =6.62 \times 10^{-34}\,Js)$ આવેલું છે.