\(U\,\, = \,\,eV\,\, = \,\,e{V_0}\,\,In\,\,\left( {\frac{r}{{{r_o}}}} \right)\,,\)
બળ \(F\,\, = \,\, - \,\,\frac{{dU}}{{dr}}\,\, = \,\, - \frac{{e{V_0}}}{r}\)
આ બળ જરૂરી કેન્દ્રગામી બળ ઉત્પન્ન કરે છે.
\(\therefore\) \(\,\frac{{m{v^2}}}{r}\,\, = \,\frac{{e{V_0}}}{r}\,\,\,\)
\(\therefore \,\,v\,\, = \,\,\sqrt {\frac{{e{v_0}}}{m}} \)
હવે, \(\,{\text{mvr}}\,\, = \,\,{\text{n}}\,\,\frac{{\text{h}}}{{{\text{2}}\pi }}\,\,\,\)
\(\therefore\) \(mr\,\, = \,\,\left( {\frac{{nh}}{{2\pi }}} \right)\,\,\frac{1}{v}\,\, = \,\,\left( {\frac{{nh}}{{2\pi }}} \right)\,\,\sqrt {\frac{\mu }{{e{V_0}}}} \)
\(\therefore\) \(\,{r_n}\,\, \propto \,\,n\)