In $\triangle\text{ABC},$ the bisector of $\angle\text{B}$ meets AC at D. A line PQ || AC meets AB, BC and BD at P, Q and R respectively.
Show that PR × BQ = QR × BP.
Download our app for free and get started
In triangle BQP, BR bisects angle B.
Applying angle bisector theorem, we get:
$\frac{\text{QR}}{\text{PR}}=\frac{\text{BQ}}{\text{BP}}$
⇒ BP × QR = BQ × PR
This completes the proof.
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
D and E are points on the sides AB and AC respectively of a $\triangle\text{ABC}.$ In the following cases, determine whether DE || BC or not.
AD = 5.7cm, DB = 9.5cm, AE = 4.8cm and EC = 8cm.
In the given pairs of triangles, find which pair of triangles are similar. State the similarity criterior and write the similarity relation in symbolic from.
A guy wire attached to a vertical pole of height $18\ m$ is $24\ m$ long and has a stake attached to the other end.
How far from the base of the pole should the stake be driven so that the wire will be taut?
In a right triangle $ABC,$ right-angled at $B, D$ is a point on hypotenuse such that $\text{BD}\perp\text{AC}.$ If $\text{DP}\perp\text{AB}$ and $\text{DQ}\perp\text{BC}$ then prove that.
ABCD is a parallelogram in which P is the midpoint of DC and Q is a point on AC such that $\text{CQ}=\frac{1}{4}\text{AC}.$ If PQ produced meets BC at R, prove that R is the midpoint of BC.
Two triangles DEF and GHK are such that $\angle\text{D}=48^\circ$ and $\angle\text{H}=57^\circ.$ If $\triangle\text{DEF}\sim\triangle\text{GHK}$ then find the measure of $\angle\text{F}.$