D and E are points on the sides AB and AC respectively of a $\triangle\text{ABC}.$ In the following cases, determine whether DE || BC or not.
AD = 5.7cm, DB = 9.5cm, AE = 4.8cm and EC = 8cm.
Download our app for free and get started
We have:
$\frac{\text{AD}}{\text{DB}}=\frac{5.7}{9.5}=0.6\text{cm}$
$\frac{\text{AE}}{\text{EC}}=\frac{4.8}{8}=0.6\text{cm}$
Hence, $\frac{\text{AD}}{\text{DB}}=\frac{\text{AE}}{\text{EC}}$
Applying the converse of Thalse' theorem, we conclude thet DE || BC.
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
D and E are points on the sides AB and AC respectively of a $\triangle\text{ABC}$ such that DE || BC:
AD = (7x - 4)cm, AE = (5x - 2)cm, DB = (3x + 4)cm and EC = 3x cm.
$\triangle\text{ABC}\sim\triangle\text{DEF}$ such that $\text{ar}(\triangle\text{ABC})=64\text{cm}^2$ and $\text{ar}(\triangle\text{DEF})=169\text{cm}^2.$ If BC = 4cm, find EF.
D and E are points on the sides AB and AC respectively of a $\triangle\text{ABC}$ such that DE || BC: If $\frac{\text{AD}}{\text{AB}}=\frac{8}{15}$ and EC = 3.5cm, find AE.
A guy wire attached to a vertical pole of height $18\ m$ is $24\ m$ long and has a stake attached to the other end.
How far from the base of the pole should the stake be driven so that the wire will be taut?
D and E are points on the sides AB and AC respectively of a $\triangle\text{ABC}.$ In the following cases, determine whether DE || BC or not. AD = 7.2cm, AE = 6.4cm, AB = 12cm and AC = 10cm.