જો બહુપદી $f(x)$ ને $x + 1,\,x - 2,\,x + 2$ વડે ભાગતા મળતી શેષ $6, 3, 15$ હોય તો $f(x)$ ને $(x + 1)\,(x + 2)\,(x - 2)$ વડે ભાગતા મળતી શેષ . . . થાય .
  • A$2{x^2} - 3x + 1$
  • B$3{x^2} - 2x + 1$
  • C$2{x^2} - x - 3$
  • D$3{x^2} + 2x + 1$
Difficult
Download our app for free and get startedPlay store
a
(a) \({{f(x)} \over {x + 1}} = {\phi _1}(x) + {6 \over {x + 1}},\,{{f(x)} \over {x - 2}} = {\phi _2}(x) + {3 \over {x - 2}}\)

and \({{f(x)} \over {x + 2}} = {\phi _3}(x) + {{15} \over {x + 2}}\)

\({{f(x)} \over {(x + 1)\,(x + 2)\,(x - 2)}} = \phi (x) + {{Q(x)} \over {(x + 1)\,(x + 2)\,(x - 2)}}\)

We have to find \(Q(x)\), which will be a second degree polynomial. When \(Q(x)\) is divided by \((x + 1)\), we should get the same remainder as being obtained by dividing \(f(x)\) by \((x + 1)\) i.e., \(6\). Similarly when \(Q(x)\) is divided by \((x - 2)\), remainder should be \(3\) and when \(f(x)\) is divided by \(x + 2,\) the remainder should be \(15.\)

\(\therefore Q( - 1) = 6\)

\(Q(2) = 3\), \(Q( - 2) = 15\)

Let \(Q(x) = \alpha {x^2} + \beta x + \gamma \),

\(\therefore \alpha - \beta + \gamma = 6\)…..(i)

\(4\alpha + 2\beta + \gamma = 3\).....(ii); \(4\alpha - 2\beta + \gamma = 15\) …..(iii)

\( \Rightarrow \)\(\alpha = 2,\,\beta = - 3,\,\gamma = 1\);

\(\therefore Q(x) = 2{x^2} - 3x + 1\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    ${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $
    View Solution
  • 2
    જો $x = 3 - \sqrt {5,} $ તો ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
    View Solution
  • 3
    જો $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$ તો આપેલ પૈકી કોની કિમત $1$ છે.
    View Solution
  • 4
    સમીકરણ ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ ના ઉકેલની સંખ્યા મેળવો.
    View Solution
  • 5
    ${{(x - a)(x - b)} \over {(x - c)(x - d)}} = {A \over {x - c}} - {B \over {(x - d)}} + C$, તો $C = . . .. $
    View Solution
  • 6
    ${{{x^2} + 1} \over {({x^2} + 4)(x - 2)}}$ ના વિસ્તરણમાં ${x^5}$ નો સહગુણક મેળવો.
    View Solution
  • 7
    ${1 \over {\sqrt {(11 - 2\sqrt {30} )} }} - {3 \over {\sqrt {(7 - 2\sqrt {10} )} }} - {4 \over {\sqrt {(8 + 4\sqrt 3 )} }} = $
    View Solution
  • 8
    ${{{x^4} + 24{x^2} + 28} \over {{{({x^2} + 1)}^3}}} = . .$ .
    View Solution
  • 9
    સમીકરણ ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$ નો ઉકેલ મેળવો.
    View Solution
  • 10
    ${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
    View Solution