\(\therefore \frac{4}{3}\pi {R_2}^3 = \frac{1}{{64}} \times \frac{4}{3}\,\pi {R_1}^3\,\,\,\,{\text{(}}\) જ્યાં \({{\text{R}}_{\text{1}}}{\text{ = }}\)પૃથ્વીની હાલ ની ત્રિજ્યા \(,{\text{ }}{{\text{R}}_{\text{2}}}\) પૃથ્વી ની નવી ત્રિજ્યા )
\(\therefore \,{R_2} = \frac{1}{4}{R_1}\) પૃથ્વી પર બાહ્ય તોર્ક લાગતો ના હોવાથી
\(\,L = I\omega = I\left( {\frac{{2\pi }}{T}} \right) = \,\) અચળ \(\,\,\therefore \,{I_1}\left( {\frac{{2\pi }}{{{T_1}}}} \right) = {I_2}\,\,\left( {\frac{{2\pi }}{{{T_2}}}} \right)\)
\(\therefore \,\left( {\frac{2}{5}M{R_1}^2} \right) \times \frac{1}{{{T_1}}} = \left( {\frac{2}{5}M{R_2}^2} \right) \times \frac{1}{{{T_2}}}\,\)
\(\therefore {T_2} = \left( {\frac{{{R_2}}}{{{R_1}}}} \right) \times {T_1}\)
\(\therefore \,{T_2} = \left( {\frac{{\frac{{{R_1}}}{4}}}{{{R_1}}}} \right)\, \times {T_1}\,\,\,\left( {\because {R_2} = \frac{1}{4}{R_1}} \right)\, = {\left( {\frac{1}{4}} \right)^2} \times 24\,\)
\(\,(\because {T_1} = 24\,h)\,\, = \frac{1}{{16}} \times 24 = 1.5\,\,h\)