\(\frac{N}{{{N_0}}} = {\left( {\frac{1}{2}} \right)^n} = {\left( {\frac{1}{2}} \right)^{t/T}}\)
\(\therefore\) \(\frac{N}{{{N_0}}} = {\left( {\frac{1}{2}} \right)^{\frac{{T/2}}{T}}} = {\left( {\frac{1}{2}} \right)^{1/2}} = \frac{1}{{\sqrt 2 }}\)
$A\xrightarrow{\alpha }{{A}_{1}}\xrightarrow{\beta }{{A}_{2}}\xrightarrow{\alpha }{{A}_{3}}\xrightarrow{\gamma }{{A}_{4}}$