$(R = 8.314\, J \,mol^{-1}\, K^{-1})$
\(k_{2}=2 k_{1}, T_{1}=20+273=293\, \mathrm{K}\)
or \(T_{2}=35+273=308\, \mathrm{K}\)
\(R=8.314\, \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1}\)
\(\log \,2=\frac{E_{a}}{2.303 \times 8.314}\left(\frac{1}{293}-\frac{1}{308}\right)\)
\(0.3010=\frac{E_{a}}{19.147} \times \frac{15}{293 \times 308}\)
\(E_{a} =34673 \,\mathrm{J}\,\mathrm{mol}^{-1}\)
\(=34.7 \,\mathrm{kJ}\, \mathrm{mol}^{-1}\)