$\mathrm{E}=\frac{\mathrm{Q}}{4 \pi \varepsilon_0 \mathrm{R}^2}$
$\varepsilon_0=\frac{\mathrm{Q}}{4 \pi \mathrm{R}^2 \mathrm{E}}$
$\text { Now, } \varepsilon_0 \mathrm{E}^2=\frac{\mathrm{Q}}{4 \pi \mathrm{R}^2\mathrm{E}} \cdot \mathrm{E}^2=\frac{\mathrm{Q}}{4 \pi \mathrm{R}^2} \cdot \mathrm{E}$
${\left[\varepsilon_0 \mathrm{E}^2\right]=\left[\frac{\mathrm{QE}}{\mathrm{R}^2}\right]=\frac{[\mathrm{Q}][\mathrm{E}]}{\left[\mathrm{R}^2\right]}=\frac{[\mathrm{Q}]}{\left[\mathrm{R}{ }^2\right][\mathrm{Q}][\mathrm{R}]}}$
$=\frac{[\mathrm{W}]}{\left[\mathrm{R}^3\right]}=\frac{\mathrm{ML}^2 \mathrm{~T}^{-2}}{\mathrm{~L}^3}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
$\int {\frac{{dx}}{{\sqrt {{a^2}\, - \,{x^n}} \,}}\, = \,{{\sin }^{ - 1}}\,\frac{x}{a}} $