\(\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{100}{5}=20 \Omega\)
for \(AC\) voltage
\(\mathrm{X}_{\mathrm{L}}=20 \sqrt{3} \Omega\)
\(\mathrm{R}=20 \Omega\)
\(\mathrm{Z}=\sqrt{\mathrm{X}_{\mathrm{L}}^2+\mathrm{R}^2}=\sqrt{3 \times 400+400}=40\)
Power \(-i_{\text {rms }}^2 R\)
\(=\left(\frac{\mathrm{V}_{\text {rms }}}{\mathrm{Z}}\right)^2 \times \mathrm{R}=\left(\frac{\frac{200}{\sqrt{2}}}{40}\right)^2 \times 20=250 \mathrm{~W}\)