Given: Moles of monoatomic gas \(=\alpha\), moles of diatomic gas is \(\beta\).
Solution:
The mixture is behaving as diatomic gas. If we neglect the vibrational mode of freedom then degree of freedom ( \(\left.f_{\text {mix }}\right)\) of mixture is \(3\) (for translational) \(+2\) (for rotational \(=5\).
We know that,
\(f _{\text {mix }}=\frac{ f _1 n _1+ f _2 n _2}{ n _1+ n _2}\)
\(\Rightarrow 5=\frac{3 \alpha+6 \beta}{\alpha+\beta}\)
\(\Rightarrow 5 \alpha+5 \beta=3 \alpha+6 \beta\)
\(\therefore 2 \alpha=\beta\)