\(e V_{s}=\frac{h c}{\lambda}-\frac{h c}{\lambda_{0}}\)
\(\therefore\) As per question, \(e V=\frac{h c}{\lambda}-\frac{h c}{\lambda_{0}}\) ..... \((i)\)
\(\frac{e V}{4}=\frac{h c}{2 \lambda}-\frac{h c}{\lambda_{0}}\) ..... \((ii)\)
From equations \((i)\) and \((ii)\), we get
\(\frac{h c}{2 \lambda}-\frac{h c}{4 \lambda}=\frac{h c}{\lambda_{0}}-\frac{h c}{4 \lambda_{0}}\)
\(\Rightarrow \frac{h c}{4 \lambda}=\frac{3 h c}{4 \lambda_{0}}\) or \(\lambda_{0}=3 \lambda\)