\({Q=\frac{1}{R} \sqrt{\frac{L}{C}}} \)
\({Q_{1}=\frac{1}{15} \sqrt{\frac{3.5}{30 \times 10^{-6}}}=\frac{100}{15} \sqrt{\frac{35}{3}}=22.77} \)
\({Q_{2}=\frac{1}{25} \times \sqrt{\frac{1.5}{45 \times 10^{-6}}}=40 \times \sqrt{\frac{5}{90}}=9.43} \)
\({Q_{3}=\frac{1}{20} \sqrt{\frac{1.5}{35 \times 10^{-6}}}=50 \times \sqrt{\frac{3}{70}}=10.35} \)
\({Q_{4}=\frac{1}{25} \times \sqrt{\frac{2.5}{45 \times 10^{-6}}}=\frac{40}{\sqrt{30}}=7.30}\)
Clearly \(Q_{1}\) is maximum of \(Q_{1}, Q_{2}, Q_{3},\) and \(Q_{4}\).
Hence, option \((a)\) should be selected for better tuning of an \(L-C-R\) circuit.
જોડકાં જોડો.
પ્રવાહ $ r.m.s. $ મૂલ્ય
(1)${x_0 }\sin \omega \,t$ (i)$ x_0$
(2)${x_0}\sin \omega \,t\cos \omega \,t$ (ii)$\frac{{{x_0}}}{{\sqrt 2 }}$
(3)${x_0}\sin \omega \,t + {x_0}\cos \omega \,t$ (iii) $\frac{{{x_0}}}{{(2\sqrt 2 )}}$