( $R =$ મોલર વાયુ અચળાંક $= 8.314\,JK^{-1}\,mol^{-1}$ )
\(\log \,\frac{{{k_2}}}{{{k_1}}}\, = \,\frac{{{E_a}}}{{2.303\,\,R}}\,\left( {\frac{1}{{{T_1}}}\, - \,\frac{1}{{{T_2}}}} \right)\)
\(\log \,\frac{{1.3 \times {{10}^{ - 3}}}}{{1.3 \times {{10}^{ - 4}}}}\, = \,\frac{{{E_a}}}{{2.303 \times 8.314}}\,\left[ {\frac{1}{{373}} - \frac{1}{{423}}} \right]\)
\(1 = \frac{{{E_a}}}{{2.303 \times 8.314}}\,\left[ {\frac{1}{{373}} - \frac{1}{{423}}} \right]\)
\({E_a}\, = \,60\,\,kJ/mole\)
$1$. $[A]$ $0.012$, $[B]$ $0.0351\rightarrow $ પ્રારંભિક દર $ = 0.10$
$2$. $[A]$ $0.024$, $[B]$ $0.070\rightarrow $ પ્રારંભિક દર $= 1.6$
$3$. $[A]$ $0.024$, $[B]$ $0.035\rightarrow $ પ્રારંભિક દર $ = 0.20$
$4$. $[A]$ $0.012$ , $[B]$ $0.070\rightarrow $ પ્રારંભિક દર $ = 0.80$
(આપેલું છે: $R =2\,cal\,K ^{-1}\,mol ^{-1}$ )
$T$ (in, $K$) $- 769$ , $1/T$ (in, $K^{-1}$ ) $- 1.3\times 10^{-3},$
$\log_{10}K - 2.9\,T$ (in, $K$) $- 667$, $1/T$ (in, $K^{-1}) - 1.5\times 10^{-3}$, $\log_{10}\,K - 1.1$
(આપેલું છે: $R =2\,cal\,K ^{-1}\,mol ^{-1}$ )