\(=\sqrt{{ R ^{2}+ x _{ L }^{2}}}=100\) \(...(i)\)
\(f =1000 Hz\) of applied \(AC\) signal
Voltage leads current bly \(45^{\circ}\)
\(\tan 45^{\circ}=\frac{ i X _{ L }}{ iR }=\frac{\omega L }{ R }\)
ie \(R = X _{ L }=\omega L\)
Putting in eqn \((i):\) \(\sqrt{ X _{ L }^{2}+ X _{ L }^{2}}=100\)
\(\sqrt{2} X _{ L }=100 \Rightarrow X _{ L }=50 \sqrt{2}\)
ie \(\omega L =50 \sqrt{2}\)
\(L =\frac{50 \sqrt{2}}{\omega}=\frac{50 \sqrt{2}}{2 \pi f }=\frac{25 \sqrt{2}}{\pi \times 1000} H\)
\(=1.125 \times 10^{-2} H\)
$i=[6+\sqrt{56} \sin (100 \pi \mathrm{t}+\pi / 3)] \mathrm{A}$ પ્રવાહનું $rms$ મૂલ્ય. . . . . . .$A$ હશે.