$k=A e^{-E_{a} / R T}$
$\ln k=\ln A-\frac{E_{a}}{R T} \cdots \cdots(i i)$
Comparison of equation $(i)$ and $(ii)$
$E_{a}$ is $69$
The rate constants in Arrhenius equation at two different
temperatures are expressed as stated below
$\ln k_{1}=\ln A-\frac{E_{ a }}{ RT _{1}}$
$\ln k_{2}=\ln A-\frac{E_{ a }}{ RT _{2}}$
Therefore, the Arrhenius equation for two different temperatures is expressed as shown below.
$\ln k_{2}-\ln k_{1}=\left(\ln A-\frac{E_{ a }}{ RT _{2}}\right)-\left(\ln A-\frac{E_{ a }}{ RT _{1}}\right)$
This equation is simplified as shown below.
$\ln \frac{k_{2}}{k_{1}}=\frac{E_{2}}{ R }\left(\frac{1}{ T _{1}}-\frac{1}{ T _{2}}\right)$
$\ln \frac{k_{2}}{k_{1}}=\frac{E_{ a }}{ R }\left(\frac{ T _{2}- T _{1}}{ T _{1} T _{2}}\right)$ or $\log \frac{k_{2}}{k_{1}}=\frac{E_{ a }}{2.303 R }\left(\frac{ T _{2}- T _{1}}{ T _{1} T _{2}}\right)$
Substitute the values in the above equation as follows.
$\log \frac{2 k_{1}}{k_{1}}=\frac{69}{2.303 \times 8.314}\left(\frac{ T _{2}-300}{300 T _{2}}\right)$
$\log 2=\frac{69 \times 10^{3}}{2.303 \times 8.314}\left(\frac{ T _{2}-300}{300 T _{2}}\right)$
$T _{2}=307.7 \,K$
$A_2 $ $\rightleftharpoons$ $ A + A$ ....... (ઝડપી) ;
$A + B_2\rightarrow AB + B$ ..... (ધીમી) ;
$ A + B \rightarrow AB$ ...... (ઝડપી)
($R$ એ વાયુ અચળાંક છે) 
(આપેલું છે: $R =2\,cal\,K ^{-1}\,mol ^{-1}$ )
${{H}_{2}}+C{{l}_{2}}\xrightarrow{\text{Sunlight}}2HCl$